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SUMMARY where IL is the light generated current and I o the
reverse saturation current. The terms k, T, and q

Epitaxial back surface field structures were have their usual meanings. Io was modelled using the

formed by depositing a 10 pm thick 10 
0-cm epitaxial low-high junction theory of Godlewski et al. (4). The

silicon layer onto substrates with resistivities of following relationship was obtained for I o
0.01, 0.1, 1.0 and 10 0-cm. A correlation between cell
open-circuit voltage and substrate resistivity was ob- W

served and was compared to theory. The cells were aso 
2

D S + tanh-
irradiated with 1 MeV electrons to a fluence of 5x10

5
n P

e/cm2. The decrease of cell open-circuit voltage was Iop NAL W
in excellent agreement with theoretical predictions 1 + S tanh (2)

and the measured short circuit currents were within 2% P
of the prediction. Calculations are presented of opti-

o mum cell performance as functions of epitaxial layer where
thickness, radiation fluence and substrate diffusion

length. s L + W
S P+ tanh -

INTRODUCTION NA D L Dp+ L +
S = LL p -P

Back surface field effect (BSF) solar cells made NA+ D p 1 + L + tanh (2a)
from 10 Q-cm material exhibit open-circuit voltages D L (2a)

and efficiencies higher than conventional 10 0-cm cells

(1-3). The increased voltage appears to be dependent where W is the p-type region width, L and +
upon the ratio of base width, W, to base minority car- are electron diffusion lengths and Dp nd Dp+ are

rier diffusion length, L. (1,4) Small ratios lead to electron diffusion constants in the p and p+ regions.

higher voltages and hence increased performance over Wp+ is p+ region thickness and sr is the surface

conventional 10 0-cm cells. In order to retain this recombination velocity at the metal-p+ region contact.

performance advantage in a radiation field, which de- The other terms are in standard notation. The total I
creases L, it is necessary that the W/L ratio in the must also include the Ion component from the diffused
BSF cell remain small. Published results (1) indicate region. The drift field model was used for this compo-

that 100 pm thick BSF cells retain their open circuit nent as described previously (4). However, because its

voltage advantage over conventional cells to higher magnitude was much lower than Iop , Ion was ignored for

electron fluences than do thicker BSF cells. Fabrica- the calculations.

tion of single crystal cells with base widths less Equation (2) was used to model 10 0-cm epitaxial
than 100 pm poses a handling problem. Therefore, structures deposited on 1, 0.1, or 0.01 0-cm substrates.
Mandelkorn (1) proposed the epitaxial structure shown This construction produces back surface field struc-
in figure 1 to circumvent these handling problems. tures due to autodoping of the epitaxial layer by the
This structure differs from the epitaxial drift field substrate. For the structures formed on 10 0-cm sub-
solar cell structures fabricated in the past (5-7) in strates, the finite width, infinite surface recombina-
that there is no intentional gradation of dopant tion velocity model for Io was used because no back
throughout the epitaxial layer. surface field was formed there. The Io relation-

The purpose of this work was to confirm feasibi- ship for this case is:

lity of the epitaxial BSF concept and to explore the D W D W
performance of epitaxial BSF solar cell structures 2 n coth n + coth (3)
having base widths of about 10 pm. This layer thick- I0 ni NALn Ln NDLp LP
ness was chosen primarily to test theoretical predic-

tions of open-circuit voltage and degradation in a where the term have their usual meanings.
radiation field rather than to optimize output. The

layers were deposited onto substrates with resistivi- Performance in a radiation environment was deter-
ties between 10 and 0.1 I-cm. Solar cells were formed, mined by using equations (1-3). The radiation-reduced
tested, then irradi ted with 1 MeV electrons to fluen- diffusion length at each fluence level was obtained
ces of 5x101 5 e/cm . The performance of these cells using the standard relationship:
was compared to theoretical predictions. Optimization
of the epitaxial BSF structure as a function of radia- 1 1
tion fluence was also calculated. 2 - + K4

L2  L2 (4)LO
THEORY

where L is the diffusion length at a given fluence,
The simple diode equation of Shockley (8) was L the Tnitial diffusion length, D the fluence of

used to model the open-circuit voltage, Voc through 10MeV electrons and K the damage coefficient. The
the following relationship: damage coefficient used for the epitaxial layer was

9Xl0-11/electron (9).

Voc q I (1)



EXPERIMENTAL substrate cells. Significant contributions to cell
current are apparently being made by the substrates in

Cell Fabrication the other cases.

A cross section of the epitaxial cell structure is The peak in cell current for the 1.0 0-am cells
shown in figure 1. Substrates used in the epitaxial was unexpected and caused the peak in cell efficiency
deposition were 10, 1, 0.1, and 0.01 f-cm resistivity noted previously. Measurements of diffusion lengths
with dimensions 1X2x0.035 cm. Prior to epitaxial depo- made on companion wafers prior to deposition indicated
sition, the wafers were mechanically polished. They that the short-circuit currents should have increased
were then placed in an epitaxial reactor with the low- continuously from 0.01 to 10 n-cm substrates. This
est resistivity samples at the downstream end of the trend holds for all except the 10 0-cm substrates where
gas inlet. The deposition sequence consisted of a the decrease is noted. To test if a loss of diffusion
6 min. heat-up in hydrogen to the deposition tempera- length had occurred during the epitaxial deposition,
ture of 11250 C followed by a 4 min. etch in HC1. the epitaxial layer was removed and a conventional cell
After purging with H2 , a SiCl 4 -B2H6-H 2 mixture was made from the 10 a-cm substrate. Subsequent diffusion
passed through the chamber for about 14 minutes to length and cell performance measurements indicated that
form the epitaxial Si layer. After a 1/2 minute purge the diffusion length had indeed decreased to about 50
with H2 the samples were removed. In one of the depo- pm. No diffusion length measurements were made on the
sitions, a 9.0 pm epitaxial layer of 9.8 0-cm average other substrates after processing to determine if simi-
resistivity was obtained. In the other deposition a lar diffusion length degradation had occurred.
malfunction occurred after a 6.0 pm thick layer of 5.8
0-cm material had been deposited. Subsequently, a 2.6 Attempts to determine diffusion lengths in the

pm layer of 15 0-cm material was deposited to complete epitaxial cells were frustrated by the difficulty of
the run. Junctions were then formed in the wafers by interpreting the results. In addition to significant
diffusion from a POC13 source at 850' C for 30 min. current contributions from the substrate, the presence

Contacts were applied to complete fabrication. No of a back surface field further complicated the results.

antireflection coatings were used on the cells.
Open Circuit Voltage. - The dependence of open-

Performance Evaluation circuit voltage, Voc , on substrate resistivity is shown
in figure 4. The bars represent the range of experi-

Performance evaluation of the cells was made un- mental results obtained. The solid curve was obtained

der a Spectrolab X-25L solar simulator. Spectral re- from equations (1), (2) and (2a) using the data shown

sponses were obtained with narrow bandpass interference in Table I for the cells on 0.01, 0.1 and 1.0 0-cm
filters (10). Diffusion length measurements were made substrates. Conventional theory was used for the cells
using the x-ray technique (11). Ionized impurity pro- on 10 0-cm substrates. Current densities were obtained

files in the epitaxial layers were obtained from capa- from figure 3. The values of substrate diffusion

citance-voltage measurements. lengths were obtained from measurements described pre-
viously. The constant value of diffusion length in the

Irradiations were performed in air using 1 MeV epitaxial layer of 80 pm was chosen to provide a good
electrons from a Cockroft-Walton type accelerator (10). fit to the data at the 0.01 Q-cm point. Good agreement

Samples were mounted on a temperature controlled plate. is obtained for all resistivities. No increase in Voc
Cell performance was monitored periodically during is predicted for substrate resistivities below 0.1 0-cm
irradiation. Maximum irradiation fluence was 5x10ol

1 5  
in agreement with data from Mandelkorn (12).

e/m&.
Closer inspection of the experimental data shows

EXPERIMENTAL RESULTS that variations from cell to cell cause the wide range
of values indicated. For example, the average open-

Performance Prior to Irradiation circuit voltages of cells formed in a single deposition
run are consistently greater than the voltages of cells

Efficiency. - Of the 60 substrates coated with formed when two depositions were required. From the
epitaxial silicon layers, 36 were fabricated into solar deposition data, it was known that the doping profiles
cells. Nine cells were made from each of the four sub- were different between the two cases. To obtain more

strate resistivities -- 0.01, 0.1, 1.0 and 10 0-cm. quantitative information, capacitance-voltage measure-
Junction characteristics were good and reverse leakage ments were made to determine the impurity profile in
currents were low. Some cells had high series resis- the first several microns of the epitaxial layer near-
tances that were traced to grids that did not adhere est the junction. Results for typical single and
well to the polished surfaces. This was a slight pro- double deposition cells are shown in figure 5. It can
blem; however about half of the cells had fill factors clearly be seen that the deposition did not result in
in excess of 72% initially. The maximum fill factor uniformly doped layers. Although the average resisti-

initially was nearly 76%. vity of the layer formed in a single deposition was
measured to be 9.8 0-cm, it can be seen from figure 5

The dependence of cell efficiency on substrate that the material closest to the junction was about

resistivity is shown in figure 2. The points repre- 6 O-cm. In the double deposition case, 15 0-cm mate-

sent the average of nine cells, and the bars the range. rial is closest to the junction. The 6 and 15 0-cm
Cells made on the 1.0 0-cm substrates had the highest resistivities were then used instead of the average of
efficiency. Average cell efficiency was 6.2%, which 10 0-cm to model the cells deposited on 10 0-cm sub-
corresponds to 8.4% if an antireflection coating such strates. The complete range of open-circuit voltages
as SiO had been applied, observed in figure 4 for the 10 

0
-cm substrates was

predicted.
Short Circuit Current. - The dependence of short-

circuit current on substrate resistivity is shown in Since reverse breakdown limits C-V measurements,
figure 3. Again, the range is indicated by the bars it was not possible to measure profiles deeper into

and the points represent the average of 9 cells. If the wafer without etching away some material. No etch-
only the 10pm epitaxial layer were contributing to the ing was done, hence the autodoping profile of the p+
short-circuit current, a current of about 41 mA would substrate into the epitaxial layer was not determined.
be expected. This is true for only the 0.01 0-cm It should also be noted that a slightly harmful drift
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field is present in the single deposition cells, while EPITAXIAL CELL OPTIMIZATION
a slightly beneficial drift field is present in the
double deposition cells. These slight profile differ- Because of the excellent agreement between the

ences apparently did not greatly affect the results. experimental and theoretical results, calculations were
made to optimize the epitaxial back surface field cell

Performance After Irradiation structure for performance in a radiation field. These
calculations were performed using the low-high junction

Open Circuit Voltage. - Figure 6 shows the effect theory (4, 1k) described previously. In this study,
of 1 MeV electron irradiation on the open-circuit vol- efficiency was calculated as a function of epitaxial

tage of epitaxial cells formed on the different sub- layer thickness and fluence of 1 MeV electrons. These

strates. The points for each substrate resistivity efficiencies were calculated for cells with an ideal

are the average of three cells. Also included are re- SiO antireflection coating, a 0.01 (-cm substrate and

sults for conventional 10 0-cm cells (13). Epitaxial an ideal fill factor. As a result of the ideal fill

cells formed on 0.01, 0.1 or 1 (-cm substrates have factor assumption, these efficiencies are about 15%
greater open-circuit voltages than conventional cells greater than could be practically achieved but serve

at all fluences. The performance of the epitaxial well for relative comparisons. The values used in this

cells formed on 10 £-cm substrates is typical of a con- calculation are shown in Table II and the results shown

ventional cell having an initial diffusion length of in figures 10 and 11. In figure 10, an initial sub-

about 80 pm. This is consistent with the results of strate diffusion length of 3 pm with a damage coeffi-

figure 3. The epitaxial cells formed on 0.01 -cmn cient of 9X10
- 1 0 electron-1 was assumed. The initial

substrates had the highest open-circuit voltages and epitaxial layer diffusion length was held constant at

they retained this advantage throughout the irradia- 100 pm independent of layer thickness. The diffusion

tion. Therefore the data from these cells were used length damage coefficient used for the epitaxial layer
to test predictions made from theory. These cells was 9X10-ll/electron.

were also the easiest to model because their substrate
diffusion lengths were low -- probably less than 5 pm. It can be seen that peak efficiency depends on

Figure 7 shows the results obtained using equations both the width of the epitaxial layer and the fluence.

(1), (2) and (2a) when an initial diffusion length of For each end-of-life fluence, there is an optimum epi-

80 pm was assumed for the epitaxial layer and 3 pm for taxial layer thickness that gives maximum efficiency
the substrate. Temperature was 250 C and a layer at end-of-life. For example, for a fluence of 1x1015

thickness of 9.0 pm was assumed. No attempt was made electrons/cm
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corresponding to about 22 years in syn-
to account for the different impurity concentration chronous orbit, a peak efficiency of 10.8% is obtained

near the interface. A diffusion length damage coeffi- with an epitaxial layer thickness of 17 pm. For epi-
cient of 9l-11/electron was used for the epitaxial taxial layers thicker than about 200 pm, the effect of

layer. No change was made in the 0.01 a-cm substrate the back surface field is not observed and the cell

diffusion length. The error bars show the range of behaves like a conventional cell. Accordingly, conven-

results obtained and the points represent the averages. tional cell performance is represented by the calcula-

Excellent agreement is obtained between theory and ex- ted values at 300 pm thickness. Using this comparison,
periment. The range of values obtained for the cells it can be seen that at all fluences the optimum thick-

may be due to the variation in doping level near the ness epitaxial layer cell will outperform the conven-

junction. Also, the voltage of the point at 5x1015 tional cell by about 5%.
e/cm

2 
may be in some error because significant peeling

of the grids from the cell occurred at that point. In the second case, an initial 50 pm diffusion
length was assumed in the 0.01 0-cm substrate. This

Short Circuit Current. - Figure 8 shows the varia- substrate diffusion length was assumed to degrade with

tion in short-circuit current with 1 MeV electron flu- a damage coefficient of 9X10-10/electron and for the 10

ence for epitaxial cells formed on the different re- (-cm epitaxial layer damage coefficient was the 9XlO-ll/
sistivity substrates. Again, the 1.0 (-cm substrate electron used previously. The effect of having a sig-
cells have the highest currents as noted previously. nificant substrate diffusion length is clearly shown

Typical of all curves is the slight decrease in ckr- in figure 11. In this case, the efficiency is not as
rent as a function of fluence. Above 2x10

1
5 e/cmC strongly dependent on epitaxial layer thickness. As a

however, there is a substantial decrease in current. result, a 6-10 pm epitaxial layer would provide essen-

This was caused by a catastrophic loss of grid adher- tial peak performance at all fluence levels. In this

ence with a concommitant increase in cell series re- case, at a fluence level of lx10
1 5 

e/cm
2 , the peak

sistance as mentioned before. efficiency for a 10 pm epitaxial layer thickness is
11.1% compared to 10.8% for the previous epitaxial

Figure 9 shows the results comparing theoretical cell calculation and 10.2% for the conventional cell

predictions of short-circuit current degradation for as noted by the 300 pm epitaxial layer thickness case.

the 0.01 0-cm substrate cells. The parameters assumed (Once again the efficiencies are theoretical efficien-

were the same as for the open Sircuit voltage case. cies; practical efficiency would be about 15% lower.)
The data points at 5X101

5 
e/cm were deleted because Thus the presence of a significant diffusion length in

of the series resistance problem. Low-high junction the substrate leads to a much improved device producing
theory was used to model the current and the deriva- nearly 10% more power than the conventional cell.

tion of the equations will be described elsewhere (14).
The theoretical curve agrees within 2% of the experi- DISCUSSION

mental curve. This difference may easily be accounted
for by the inability to accurately set the solar simu- As discussed elsewhere (4), the major unanswered

lator. No standard cell whose spectral response question relating to the low-high junction (LHJ) theory
matched the test cells was available. To further cor- is that of diffusion length. As was shown in this

roborate this contention, a comparison between cell paper, excellent agreement is obtained between LHJ

short-circuit current obtained under the X-25L solar theory and the experimental results provided long dif-
simulator and those obtained using the filter wheel fusion lengths are present in the very thin epitaxial

solar simulator (15) indicates that the solar simula- layer. In this work, a diffusion length of 80 pm was

tor results may be up to 2% low for these 0.01 Q-cm needed to fit the initial data. Whether this long a
substrate cells. In any case, good agreement between diffusion length existed in this layer is speculative

theory and experiment is obtained. at this time. Attempts to measure this diffusion length
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proved futile, as interpretation of the results was 4. M. P. Godlewski, C. R. Baraona and H. W. Brand-
complicated by the presence of a substrate with a sig- horst, Jr., "Low-High Junction Theory Applied to
nificant diffusion length as well as the back surface Solar Cells," Conference Record of the Tenth IEEE
field. Clearly, additional work must be performed to Photovoltaic Specialists Conference, Palo Alto,
resolve this question. However, the success of the CA., Nov. 1973.
low-high junction theory at explaining the variation
of open-circuit voltage with substrate resistivity and 5. W. R. Runyan and E. G. Alexander, "Development of
the variation of both open-circuit voltage and short- Epitaxial Structures for Radiation Resistant
circuit current with electron fluence suggests the Solar Cells," Proceedings of the Fifth Photovol-
validity of this approach, taic Specialists Conference, Greenbelt, MD.,

Oct. 1965, Vol. I, #A-2.
CONCLUSIONS

6. K. S. Tarneja, R. K. Riel, V. A. Rossi and E. R.
As a result of this study, the following conclu- Stonebraker, "Drift Field Dendritic Solar Cells,"

sions can be made: Proceedings of the Fifth Photovoltaic Specialists
Conference, Greenbelt, MD. , Oct. 1965, Vol. I,

1. Back surface field effects can be achieved by #A-3.
epitaxial deposition of 10 0-cm silicon layers onto
substrates with lower resistivities. 7. K. Tarneja, J. Hicks, R. Babcock and E. Stone-

braker, "Radiation Resistance of Webbed Dendritic
2. The electrical characteristics of these cells Solar Cells," Proceedings of the Fourth Photovol-

are similar to other back surface field cells. taic Specialists Conference, Cleveland, OH.,
June 1964, Vol. I, #A-8.

3. Low-high junction theory explains the varia-
tion in open-circuit voltage with substrate resisti- 8. W. Shockley, "The Theory of p-n Junctions in Semi-
vity, and the variation of both the open-circuit vol- conductors and p-n Junction Transistors," Bell
tage and short-circuit current with radiation fluence, Syst. Tech. J., vol. 28, p. 435, 1949.
provided an initial diffusion length of about 80 pm in
the epitaxial layer is assumed. 9. R. G. Downing, J. R. Carter, Jr. and J. M. Denney,

"The Energy Dependence of Electron Damage in Sili-
4. Optimization of the epitaxial cell structure con," Proceedings of the Fourth Photovoltaic

leads to the conclusion that substrate diffusion length Specialists Conference, Cleveland, OH., June 1964,
can significantly influence cell performance. If the Vol. I, #A-5.
substrate diffusion length is low, performance in a
radiation field is critically dependent upon epitaxial 10. H. W. Brandhorst, Jr. and R. E. Hart., Jr., "Radia-
layer thickness. However, if the substrate diffusion tion Damage to Cadmium Sulfide Solar Cells," NASA
length is long, superior performance results and there TN D-2932, July 1965.
is only a very weak dependence on epitaxial layer
thickness. In the latter case a peak theoretical effi- 11. J. H. Lamneck, Jr., "Diffusion Lengths in Silicon
ciency of 11.1% at lXlO 1

5 e/cm
2 
was obtained. This can Obtained by an X-ray Method," NASA TM X-1894,

be compared to a theoretical efficiency of 10.2% for a Oct. 1969.
conventional cell at the same fluence.

12. J. andelkorn, J. H. Lamneck, Jr. and L. R.
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TABLE I

PARAMETERS USED IN CALCULATION OF OPEN CIRCUIT VOLTAGE
VARIATION WITH SUBSTRATE RESISTIVITY

SUBSTRATE EPITAXIAL LAYER

Resistivity Mobility Diffusion Width Resistivity Mobility Diffusion Thickness
0-cm cm

2
/v-sec Length Microns 0-cm cm

2
/v-sec ength Microns

Microns Microns

0.01 125 5 300 10 1275 80 10
0.1 360 50 300 10 1275 80 10
1.0 850 125 300 10 1275 80 10

10 1275 50 300 10 Nominal 1275 80 10
(15/6 or 6) 1325-1200
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TABLE II

DATA FOR OPTIMIZATION OF EPITAXIAL BSF CELL

Air Mass Zero Spectrum

300 K Temperature
SiO Coated Cell
0.25 pm Junction Depth
Surface .Recombination Velocities

- Front - 105 cm/sec
- Back - 18 cm/sec

Epitaxial Layer Properties
- Initial Diffusion Length - 1100 m -1
- Damage Coefficient - 9x10

- electron
Substrate Properties

- 250 pm Thick, 0.01 n-cm Material
- Initial Diffusion Length

Fig. 10 - 3 pm
Fig. 11 - 50 pm

- Damage Coefficient - 9xlO-10 electron
- 1

5



CROSS SECTION OF EPITAXIAL
BACK SURFACE FIELD CELL

9.0 pm
10 Q-cm NOMINAL p-TYPE EPITAXIAL LAYER

p+ SUBSTRATE

RESISTIVITY - 0.01, 0. 1, 1.0 or 10 Q-cm

Fig. 1

VARIATION OF EPITAXIAL CELL EFFICIENCY
WITH SUBSTRATE RESISTIVITY

7.0 AIR MASS ZERO, 250 C

EFFICIENCY
(%)

6.0

I RANGE
o AVERAGE

5.0 I I I I
0.01 0. 1 1.0 10

SUBSTRATE RESISTIVITY (Q-CM)

Fig. 2
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VARIATION OF EPITAXIAL CELL SHORT-CIRCUIT
CURRENT WITH SUBSTRATE RESISTIVITY

48.0 -

AIR MASS ZERO, 250 C
46.0 - I RANGE

o AVERAGE

ISC' 44.0
mA

42.0

40.0
0.01 0.1 1.0 10

SUBSTRATE RESISTIVITY (Q-CM)

Fig. 3

VARIATION OF EPITAXIAL CELL-OPEN
CIRCUIT VOLTAGE WITH SUBSTRATE RESISTIVITY

.58-

.56

VOC .54
(VOLTS) T RANGE OF EXPERI-

MENTAL DATA,
.52- AMO, 250 C

-o- THEORY

.50 I
0.01 0.1 1.0 10

SUBSTRATE RESISTIVITY (Q-CM)

Fig. 4
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VARIATION OF IMPURITY PROFILE IN EPITAXIAL LAYERS

3.0x1015

0-c 14
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1.0 - # 24
15

0. 8

0.6 I I 3
1.0 2.0 3.0
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Fig. 5
0
NI
co

EFFECT OF SUBSTRATE RESISTIVITY ON THE VARIATION OF
OPEN CIRCUIT VOLTAGE UNDER ELECTRON IRRADIATION

.56 0

.54 -

VOC

(VOLTS)
.50-

o 0.01 Q-CM BASE
o 0.1

48 -. .O " "1.0
A 10 "
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0 1013 1014 1015 1016

FLUENCE OF 1 MeV ELECTRONS (EICM 2)
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VARIATION OF OPEN-CIRCUIT VOLTAGE OF 0.01 Q-CM
SUBSTRATE CELLS WITH 1 MeV ELECTRON FLUENCE

.58 -

.56 -

. 54

V AIR MASS ZERO, 250 CVOC

(VOLTS) 52 - THEORY, Lp - 80 pm

. EXPERIMENT

.50 -

.48 -

.46 I I I

0 1013 1014 1015

FLUENCE OF 1 MeV ELECTRONS (EICM 2)

Fig. 7

EFFECT OF SUBSTRATE RESISTIVITY ON THE VARIATION OF
SHORT CIRCUIT CURRENT UNDER ELECTRON IRRADIATION

46-

42(

38-

SCm 34 - o 0.01 Q-CM BASE
(mA) 0.1 " "

a 1.0

30 - A 10

26 -

22
0 i 1013 10 4 1015 1016

FLUENCE OF 1 MeV ELECTRONS (EICM 2)

Fig. 8
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VARIATION OF SHORT-CIRCUIT CURRENT OF 0.01 Q-CM
SUBSTRATE CELLS WITH ELECTRON IRRADIATION

42. 0 AIR MASS ZERO, 250 C

41.0 v

(mA)
40.0 - THEORY

J EXPERIMENT

39.0
0 1013 1014  1015

FLUENCE OF 1 MeV ELECTRONS (E/CM 2 )

Fig. 9

THEORETICAL EFFICIENCY OF THE EPITAXIAL BACK SURFACE FIELD
CELL WITH SHORT SUBSTRATE DIFFUSION LENGTH

14 - ELECTRON CONVENTIONAL
FLUENCE CELL THICKNESS

12 -1
THEORETICAL
EFFICIENCY 15

(%) 10

10Sx1015

I 1 1 1 l i l I I I I
1 10 100 1000

EPITAXIAL LAYER THICKNESS (MICROMETERS)

Fig. 10
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THEORETICAL EFFICIENCY OF THE EPITAXIAL BACK SURFACE
FIELD CELL WITH LONG SUBSTRATE DIFFUSION LENGTH

16-

ELECTRON

14~ FLUENCE CONVENTIONAL
14 CELL THICKNESS

THEORETICAL
EFFICIENCY 12

(%) 1x10 15

10015
N

1 10 100 1000
EPITAXIAL LAYER THICKNESS (MICROMETERS)

Fig. 11
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